quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
PLUS2(s1(x), y) -> PLUS2(x, y)
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
QUOT3(x, 0, s1(z)) -> PLUS2(z, s1(0))
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
PLUS2(s1(x), y) -> PLUS2(x, y)
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
QUOT3(x, 0, s1(z)) -> PLUS2(z, s1(0))
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
PLUS2(s1(x), y) -> PLUS2(x, y)
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(s1(x), y) -> PLUS2(x, y)
POL(PLUS2(x1, x2)) = 2·x1
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
Used ordering: Polynomial interpretation [21]:
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
POL(0) = 0
POL(QUOT3(x1, x2, x3)) = 3·x1
POL(plus2(x1, x2)) = 0
POL(s1(x1)) = 3 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
POL(0) = 2
POL(QUOT3(x1, x2, x3)) = x2
POL(plus2(x1, x2)) = 1 + x2
POL(s1(x1)) = 0
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(0, y) -> y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))